UNIVERSITE OUAGA I Pr Joseph KI-ZERBO

Office du Baccalauréat Séries C-E Année 2019 Session Normale Epreuve du **l'ér** tour Durée : 4 heures Coefficient : 6

EPREUVE DE MATHEMATIQUES

Cette épreuve comporte deux (2) pages (Les calculatrices ne sont pas autorisées)

Exercice I (5 points)

Le plan est muni d'un repère orthonormé $(O; \vec{i}, \vec{j})$. M(t) est un point mobile de coordonnées

$$x(t)$$
 ; $y(t)$ définies par : $\left\{ \begin{array}{c} x(t) = \frac{1}{2}\cos(2t) - \cos t \\ y(t) = \sin t \end{array} \right.$; $(t \in \mathbb{R})$

- (C) est la courbe décrite par la trajectoire de M(t).
- 1) a) Montrer que les fonctions $x:t\longmapsto x(t)$ et $y:t\longmapsto y(t)$ sont périodiques de période T que l'on précisera. (0,5) point
 - b) Que peut-on dire des positions des points M(t) et M(t+T)? (0,5 point)
 - c) Calculer x(-t) et y(-t) et en déduire les positions des points M(-t) et M(t). (0,5 point)
 - d) Justifier que l'on peut réduire le domaine d'étude à $[0; \pi]$. (0,5 point)
- 2) Soit la courbe (C') définie par :

$$\begin{cases} x(t) = \frac{1}{2}\cos 2t - \cos t \\ y(t) = \sin t \end{cases}; t \in [0, \pi].$$

- a) Comment obtient-on (C) à partir de (C')? (0,5 point)
- b) Calculer x'(t) et y'(t) et dresser le tableau de variation des fonctions x et y. (0,5 point)
- c) Déterminer les coordonnées des points en lesquels la tangente est verticale. (0,5 point)
- d) Déterminer les coordonnées des points en lesquels la tangente est horizontale. (0,5 point)
- e) Tracer avec soin la courbe (C'). (0,5 point)
- 3) Tracer la courbe (C). (0,5 point)

On donne: $\sqrt{3} = 1, 7$

Exercice II (3 points)

Soit $\theta \in \left[0; \frac{\pi}{2}\right[$

- 1) a) Résoudre dans \mathbb{C} l'équation : $z^2 + (2\sin\theta)z + 1 = 0$ (e₀). (0,5 point)
 - b) Déterminer le module et un argument de chacune des racines de (e_0) . (0,5 point)
- 2) On considère l'équation différentielle
- $y'' + 2\sin\theta y' + y = x\cos\theta + 2\sin\theta \ (e_1)$
 - a) On pose $y_0(x) = ax + b$; avec a et b des nombres réels.
 - Déterminer les réels a et b tels que y_0 soit solution de (e_1) . (0,5 point)
- b) Montrer qu'une fonction y est solution de (e_1) si et seulement si $y-y_0$ est solution d'une équation différentielle homogène du second ordre que l'on résoudra. (1 point)
- 3) Déterminer toutes les solutions de (e_1) . (0,5 point)

Problème (12 points)

Partie I: (7,5 points)

A tout entier naturel n non nul, on associe la fonction f_n définie sur

$$\left[-\frac{1}{2}; +\infty\right[\text{ par } f_n(x) = \left(x - \frac{1}{2}\right)^n \ln\left(x + \frac{1}{2}\right).$$

On désigne par (C_n) la courbe représentative de f_n dans le repère orthonormal (O, \vec{i}, \vec{j}) unité graphique 2 cm ; On notera f'_n la dérivée de f_n .

1) Soit
$$g_n$$
 la fonction définie sur $]-\frac{1}{2}; +\infty[$ par $g_n(x) = n \ln(x + \frac{1}{2}) + \frac{2x-1}{2x+1}.$

a) Etudier les variations de la fonction g_n . (0,5 point)

b) Calculer $g_n(\frac{1}{2})$ et déterminer le signe de g_n sur $]-\frac{1}{2};+\infty[$. (1 point)

a) Pour tout $x \in \left[-\frac{1}{2}; +\infty\right]$, montrer que :

(i)
$$f_1'(x) = g_1(x)$$
. (0,25 point)

(i) $f_1'(x) = g_1(x)$. (0,25 point) (ii) $f_n'(x) = (x - \frac{1}{2})^{n-1}g_n(x)$. (0,25 point)

b) On suppose que n est impair. Etudier les variations de f_n et dresser son tableau de variation. (1 point)

c) On suppose que n est pair. Etudier les variations de f_n et dresser son tableau de variation. (1 point)

3) On note T la translation du plan de vecteur $-\frac{1}{2}\vec{i}$. On note (E_n) l'image de (C_n) par la translation T.

Déterminer une équation cartésienne de (E_n) . (1 point)

a) Etudier les positions relatives de (C_1) et (C_2) . (0,5) point

b) Tracer les courbes (C_1) et (C_2) sur une même figure. (2 points)

Partie II (4,5 points)

On considère la suite (v_n) définie par :

$$v_n = \int_{\frac{1}{4}}^{\frac{3}{2}} (x - \frac{1}{2})^n \ln(x + \frac{1}{2}) dx.$$

1) Montrer que pour tout $n \ge 1$, $0 \le v_n \le \frac{\ln 2}{n+1}$. (1 point)

En déduire la limite de la suite (v_n)

2) A l'aide d'une intégration par parties, montrer que

$$v_n = \frac{\ln 2}{n+1} - \frac{2^{-n}}{n+1} \int_{\frac{1}{2}}^{\frac{3}{2}} \frac{(2x-1)^{n+1}}{2x+1} dx, \text{ pour tout } n \in \mathbb{N}^*. \text{ (1 point)}$$

3) On pose pour $n \ge 1$ et $\frac{1}{2} \le x \le \frac{3}{2}$,

$$s_n(x) = 1 - (x - \frac{1}{2}) + (x - \frac{1}{2})^2 + \dots + (-1)^n (x - \frac{1}{2})^n.$$

a) Montrer que :
$$s_n(x) = \frac{2}{2x+1} + (-\frac{1}{2})^n \frac{(2x-1)^{n+1}}{2x+1}$$
. (1 point)
b) Déduire que : $v_n = \frac{\ln 2}{n+1} - \frac{(-1)^{n-1}}{n+1} \left[\ln 2 - 1 + \frac{1}{2} - \frac{1}{3} + \dots + \frac{(-1)^{n+1}}{n+1} \right]$. (1,5 point)

On donne $\ln 2 \simeq 0,69, \ln 3 \simeq 1, 1, \ln 5 \simeq 1,61$