UNIVERSITE Joseph KI-ZERBO Office du Baccalauréat

SLearning Burkina

Année 2021 Session Normale

Epreuve du 1er toui Durée: 4 Heures

Série C : Coefficient Série E : Coefficient :

Séries C et E

EPREUVE DE SCIENCES PHYSIQUES

Les calculatrices scientifiques non programmables sont autorisées

Les téléphones portables sont strictement interdits Cette épreuve comporte quatre (4) pages

CHIMIE (08 points)

Exercice 1 (4 points)

Toutes les solutions sont maintenues à 25°C et $ke = 10^{-14}$. On donne les masses atomiques molaires en g/mol: M(N) = 14; M(C) = 12; M(Cl) = 35,5; M(O) = 16 et M(H) = 1. On dispose de deux solutions aqueuses :

- S_1 est une solution d'ammoniac de concentration molaire inconnue C_1 , de volume $V_1 = 200 \, mL \text{ et de } pH = 10,6. \text{ Le } pKa \text{ du couple } NH_4^+NH_3 \text{ est } 9,2.$

- S2 est une solution d'hypochlorite de soduim (NaClO) de concentration molaire $C_2 = 10^{-2} mol/L$, de volume $V_2 = 200 mL$ et de pH = 9.75.

- a) Montrer que l'ion hypochlorite est une base faible. (0,25 point)
 - b) Ecrire l'équation bilan de la réaction des ions hypochlorite (ClO-) avec l'eau.

(0,25 point)

- c) Calculer les concentrations molaires des espèces chimiques présentes dans S_2 puis en déduire le pka du couple acide/base associé. (1,25 points)
- Des deux bases, laquelle est la plus faible ? Justifier votre réponse. (0,25 point) 2)
- 3) On considère que l'ammoniac est faiblement ionisé.
 - a) Etablir une relation entre le pH, la concentration C_1 et le pka. (0,75 point)
 - b) Calculer la concentration C_1 de S_1 puis en déduire le volume V d'ammoniac gazeux dissout dans V_1 dans les conditions où le volume molaire vaut 22,4 L/mol. (0,5 point)
- On dose successivement S_1 et S_2 par une solution d'acide chlorhydrique de 4) concentration molaire Ca = 0.1 mol/. On verse un même volume d'acide chlorhydrique dans S_1 et S_2 tel que le mélange obtenu avec S_1 a pour pH = 9,2.
 - a) Ecrire les équations des réactions qui ont lieu au cours du dosage de ces deux bases. (0,25 point)
 - b) Calculer le volume de l'acide chlorhydrique versé dans chaque cas.

(0,25 point + 0,25 point)

Exercice 2 (4 points)

Dans l'industrie, les alcools difficiles à conserver sont transformés en esters. En procédant plus tard à l'hydrolyse de ces esters, on peut ainsi récupérer en temps voulu ces alcools.

Pour la préservation d'un alcool A on le fait réagir avec l'acide éthanoïque pour obtenir un O R' O-CH- R ester E du type :

1

1) a) Ecrire l'équation bilan de l'hydrolyse de l'ester E. (0,5 point)

- b) Les groupements alkyles R et R' étant différents, comment qualifie-t-on le carbone lié à ces deux radicaux ? (0,5 point)
- 2) L'alcool A a été initialement obtenu par l'hydratation d'un alcène B de formule C_nH_{2n} .
 - a) Ecrire l'équation bilan de cette hydratation (On utilisera les formules brutes). (0,5 point)
 - b) L'hydratation de 5,6 g de l'alcène *B* conduit à 7,4 g d'alcool *A*. En déduire la formule brute de l'alcool *A*. (0,5 point)
- 3) Donner les formules semi-développées et les noms des composés A et E. (1 point)
- 4) 500 mL d'un mélange de 1 mole d'ester E et d'eau est chauffée jusqu'à la limite de l'hydrolyse. On prélève alors 20 mL de solution qu'on dose avec une solution d'hydroxyde de soduim à $10^{-1}mol/L$. L'équivalence est obtenue pour 16mL de solution basique ajoutée.
 - a) Calculer la masse d'alcool A obtenue lorsque la limite de l'hydrolyse est atteinte. (0,5 point)
 - b) Calculer le rendement de cette hydrolyse. (0,5 point)

Données: Masses atomiques molaires en g/mol: C = 12; O = 16; H = 1.

PHYSIQUE (12 points)

Exercice 1 (4 points)

On prendra $g = 9.8m. s^{-2}$

1) Un pendule simple est formé d'un solide ponctuel de masse $m=500\,g$ et d'un fil inextensible de masse négligeable et de longueur $L=1\,m$. On écarte le solide de sa position d'équilibre de telle sorte que le fil fasse un angle θ_0 avec l'horizontal comme l'indique le schéma. On lance le solide vers le bas avec une

vitesse $\overrightarrow{v_0}$ perpendiculaire au fil qui reste tendu. $v_0 = 8.5m/s$. a) Exprimer la norme de la vitesse v du solide lorsque le fil fait un angle θ avec l'horizontal en fonction de θ_0 , θ , g, et L. **(0,5 point)**

- b) En déduire la valeur de l'angle θ_0 pour que le solide passe par sa position d'équilibre avec une vitesse $v_A = 9.2 m/s$. (0,5 point)
- 2) Au passage par sa position d'équilibre le solide frappe de plein fouet un autre solide S' de même masse et initialement au repos en A. Ce dernier part du point A avec la vitesse v_A puis parcourt le circuit ABC situé dans le plan vertical.

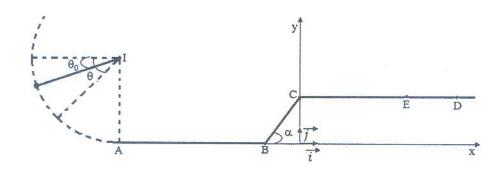
AB est rectiligne et horizontal, les frottements sont négligés sur cette partie.

 \triangleright BC est rectiligne et incliné d'un angle $\alpha=30^\circ$ par rapport à l'horizontal.

Les frottements sur cette partie sont équivalents à une force unique \vec{f} opposée, à la vitesse. La réaction \vec{R} est alors inclinée d'un angle β par rapport à la normale au plan incliné. $BC=6\ m.$

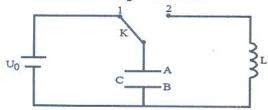
a) Exprimer l'accélération a du solide sur BC en fonction de β ; m; g; α et R; R étant l'intensité de la réaction. **(0,75 point)**

b) Exprimer $\tan \beta$ en fonction de a, g et α . (0,5 point)


c) Déterminer a sachant que le solide arrive en C avec la vitesse $V_c = 2m/s$. En déduire β . (0,5 point)

SLearning Burkina

3) Le solide quitte la piste au point C et retombe sur la partie CD horizontale (voir figure)


a) Etablir l'équation cartésienne de la trajectoire du solide au-delà de C dans le repère $(0;\vec{\imath};\vec{\jmath})$. (0,75 point)

b) Calculer la distance CE, E est le point d'impact du solide sur CD. (0,5 point)

Exercice 2 (4 points)

On considère le montage suivant :

1) L'interrupteur K est placé sur la position 1 pendant un temps suffisamment long pour permettre la charge totale du condensateur.

a) Exprimer la charge Q_A portée par l'armature A en fonction de U_0 et C. (0,25 point)

b) Exprimer l'énergie électrostatique E_0 emmagasinée par le condensateur en fonction de Q_A et C. (0,25 point)

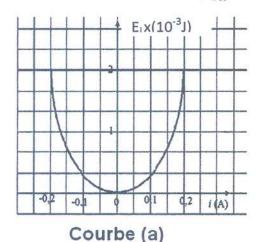
2) A la date t = 0, K est placé sur la position 2. La charge portée par l'armature A à un instant t donné est q_A .

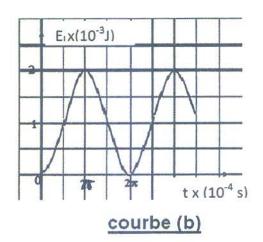
a) Exprimer l'énergie totale E du circuit en fonction de L, C, q_A et i (avec i l'intensité du courant dans la bobine). (0,25 point)

b) Montrer que l'énergie totale se concerne et a pour expression $E = \frac{Q_A^2}{2C}$. (0,5 point)

c) Etablir l'équation différentielle donnant la variation de la charge du condensateur en fonction du temps. (0,25 point)

d) On donne $q(t) = Q_{max} \sin(\omega_0 t + \varphi)$, une solution de l'équation différentielle. Déterminer φ et exprimer q(t) en fonction de Q_A , L, C et t. (0,5 point)


e) Montrer que l'expression de l'énergie magnétique ${\it E_L}$ est donnée par $E_L = \frac{E_0}{2} \left[1 + \cos \left(\frac{4\pi}{T_0} t + \pi \right) \right].$ (0,5 point) On donne : $\cos^2 \alpha = \frac{1 + \cos 2 \alpha}{2}$



3) Une étude expérimentale a permis de tracer les courbes (a) et (b) traduisant les variations de l'énergie magnétique E_L respectivement en fonction de i et en fonction du temps t.

En exploitant ces deux courbes, déterminer les valeurs de L, E_0 et T_0 . (0,75 point)

4) Déterminer les valeurs de C, Q_A et U_0 . (0,75 point)

Exercice 3 (4 points)

- 1) Qu'appelle-t-on radioactivité naturelle d'un élément ? (0,5 point)
- 2) La désintégration radioactive du polonium 210 peut s'écrire sous la forme : ${}^{210}_{84}P_0 \rightarrow {}^b_aX + {}^{206}_{82}Pb$. Déterminer a, b et X. De quel type de radioactivité s'agit-il ? (1 point)
- 3) Calculer en *MeV*, l'énergie libérée lors de la désintégration d'un noyau de polonium 210. **(0,5 point)**
- 4) En supposant qu'il n'y a pas d'émission de photons γ ; montrer que l'expression de l'énergie cinétique ainsi que la vitesse de la particule $\frac{a}{z}X$ s'écrit :

 $E_{c\alpha}=rac{\Delta m imes C^2}{rac{m_{He}}{m_{Ph}}+1}$ et calculer en MeV l'énergie cinétique ainsi que la vitesse de la particule

 $_{z}^{a}X$ émise (on rappelle qu'il y a conservation de la quantité de mouvement et de l'énergie totale des particules). (0,75 point + 0,25 point + 0,5 point)

Sachant que la demi-vie (ou période) du polonium 210 est de 138 jours, calculer le temps au bout duquel le quart d'une masse initiale m_0 de polonium 210 sera désintégrée. (0,5 point)

Données :

- $1u = 1,66054.10^{-27}kg$
- $-1 MeV = 1,6.10^{-13} j$
- Masse du noyau de P_0 : m(P_0) = 209,936u; $m_{(He)}$ = 4,0015 u
- Masse du noyau $P_b m(pb) = 205,9296 u$; $c = 3.10^8 m/s$
- $\ln(0.75) = -0.29$