

SESSION DE 2018

Unité - Progrès -Justice

SPECIALITES: - ADMINISTRATION COMMERCIALE ET COMPTABLE - TECHNIQUE DE VENTE ET COMMERCIALISATION

EPREUVE DE MATHEMATIQUES GENERALES

(L'usage de la calculatrice scientifique est autorisé)

Durée : 2 heures Coefficient : 02

Partie A (12 points)

- Pour chacune des questions suivantes, une seule des réponses proposées est exacte.
 Ecrire sur la copie, le numéro de la question et la lettre correspondant à la bonne réponse.
 - 1) Deux nombres dont la somme est 28 et le produit est 187 sont :
 - a. 15 et 13
 - b. 17 et 11
- (1pt)
- c. -17 et -11
- d. $\frac{17}{2}$ et $\frac{2}{11}$
- 2) Soient x, y et z trois termes consécutifs d'une suite arithmétique dans cet ordre. On a :
 - a. y = 2x + z
 - b. y = 2z + x (1pt)
 - $c. \ 2y = x + z$
 - d. $z = \frac{x+y}{2}$
- 3) La limite en $+\infty$ de la fonction f définie par $f(x) = \frac{2x^2 x + 1}{5x^3 + 2}$ est :
 - a. $+\infty$
 - b. 2
- (1pt)
- c. $\frac{2}{5}$
- 4 0
- 4) L'équation $x^4 5x^2 + 4 = 0$ a pour solution dans \mathbb{R} :
 - a) $S_{\mathbb{R}} = \{1; 4\}$
 - b) $S_{\mathbb{R}} = \{-2; -1; 1; 2\}$
- (1pt)

- c) $S_{\mathbb{R}} = \{1; 2\}$
- $d) S_{\mathbb{R}} = \{-4; -1; 1; 4\}$

$$(S) \begin{cases} x + y = -2 \\ xy = -35 \end{cases}$$
 (3pts)

III. Les travailleurs d'une entreprise sont répartis en fonction de leur salaire mensuel comme l'indique le tableau suivant :

Salaire (milliers de francs CFA)	[60; 80[[80; 100[[100; 120[[120; 140[
Effectifs	6	8	4	2

- 1) a. Quelle est la population étudiée ? (0,5pt)
 - b. Quel est le caractère étudié ? (0,5pt)
 - c. Quel est l'effectif de la population ? (0,5pt)
 - d. Quelle est la classe modale ? (0,5pt)
- 2) Calculer le salaire moyen. (0,5pt)
- 3) Déterminer le pourcentage des travailleurs qui ont moins de cent mille francs CFA par mois. (1,5pts)

Partie B (08 points)

On considère la fonction g définie sur $\mathbb{R} \setminus \{0\}$ par $g(x) = \frac{1-x^2}{x^2}$ et (\mathcal{C}) sa courbe représentative dans un repère orthonormé $(0, \vec{i}, \vec{j})$ d'unité graphique 1 cm.

- 1) a. Calculer les limites de g aux bornes de Dg. (2pts)
 - b. En déduire les asymptotes à (C). (1pt)
- 2) Etudier la parité de g sur Dg et en déduire une conséquence graphique pour (C).

 (1pt)
- 3) Soit g' la fonction dérivée de g sur Dg. (2pts)
 - a. Déterminer g'(x) et étudier son signe sur Dg. (1pt)
 - b. En déduire les sens de variation de g puis dresser son tableau de variation. (1pt)
- 4) Déterminer une équation de la tangente (T) à (C) au point d'abscisse $x_0 = -1$. (1pt)
- 5) Déterminer les coordonnées des points d'intersection de (C) avec l'axe des abscisses. (0,5pt)
- 6) Construire les asymptotes, la tangente (T) et la courbe (C) dans le repère (0, \(\vec{i}\), \(\vec{j}\)).
 (1pt)